Clinical trials of chimeric antigen receptor (CAR)-modified T cells have shown promise in hematologic malignancies. However, in solid tumors, the clinical responses have been less impressive. It is important to determine how to further improve the clinical effects of CAR-modified T cells. In this review, we focus on recent clinical trials and analyze the factors that determine clinical responses, including the following: 1) the composition of the CAR; 2) the preparation of CAR-modified T Cells; 3) the clinical treatment schedule; 4) the patient characteristics. We also propose future Strategies that must be investigated before the technology can be used in a wider range of clinical applications.
Related Content
Immunotherapy with gene-modified T cells: limiting side effects provides new challenges
Genetic tools have been developed to efficiently engineer T-cell specificity and enhance T-cell function. Chimeric antigen receptors (CAR) use the antibody variable segments to direct specificity against cell surface molecules. T-cell receptors (TCR) can redirect T cells to intracellular target p...


In vivo targeted delivery of CD40 shRNA to mouse intestinal dendritic cells by oral administration of recombinant Sacchromyces cerevisiae
Short hairpin RNA (shRNA)-mediated gene regulation is a commonly used technique for gene manipulation. An efficient and safe delivery system is indispensable when shRNA is delivered into living organisms for gene therapy. Previous studies have proved that DNA and protein can be delivered into den...
Equipping CAR-Modified T Cells with a Brake to Prevent Chronic Adverse Effects
Genetical modification of T lymphocytes by chimeric antigen receptor (CAR), which has the affinity to tumor associated antigen (TAA), can redirect the normal T lymphocytes with tumor specificity. Through optimization of the CAR construct from first generation to third generation, the properties o...


T cells redirected by a CD3ζ chimeric antigen receptor can establish self-antigen-specific tumour protection in the long term
A majority of cancer deaths are because of an uncontrolled relapse of the disease despite initial remission after therapy, asking for strategies to control tumour cells in the long term. Adoptive therapy with chimeric antigen receptor (CAR)-redirected T cells showed promising success in primary t...
Interleukin-15 in Gene Therapy of Cancer
Interleukin-15 (IL-15) exerts powerful stimulatory effects on lymphocyte subsets that result in antiviral and antitumoral activities. The functions of this cytokine are mainly mediated in a cell-to-cell contact fashion termed IL-15 trans-presentation. This function is mediated by a cell which tet...

On the Power of Additional and Complex Chromosomal Aberrations in CML
Unregulated proliferation of mainly myeloid bone marrow cells and genetic changes in the hematopoietic stem cell system are important features in Chronic Myeloid Leukemia (CML). In clinical diagnosis of CML, classical banding techniques, fluorescence in situ hybridization (FISH) probing for the P...
Targeting wild-type Erythrocyte receptors for Plasmodium falciparum and vivax Merozoites by Zinc Finger Nucleases In- silico: Towards a Gen
Malaria causes immense human morbidity and mortality globally. The plasmodium species vivax and falciparum cause over 75 % clinical malaria cases. Until now, gene-based strategies against malaria have only been applied to plasmodium species and their mosquito-vector. Merozoites of these two respe...

Transgenic mice expressing inhibin α-subunit promoter (inhα)/Simian Virus 40 T-antigen (Tag) transgene as a model for the therapy of granulosa cell-derived ovarian cancer
Granulosa cell tumors are rare, 3–7.6% of primary ovarian tumors, although with poor prognosis as the tumor-related mortality rate is 37.3%, with 80% of deaths occurring on recurrence. We have created a transgenic (TG) murine model for gonadal somatic cell tumors by expressing the powerful vira...
Targeting wild-type Erythrocyte receptors for Plasmodium falciparum and vivax Merozoites by Zinc Finger Nucleases In- silico: Towards a Genetic Vaccine against Malaria
Malaria causes immense human morbidity and mortality globally. The plasmodium species vivax and falciparum cause over 75 % clinical malaria cases. Until now, gene-based strategies against malaria have only been applied to plasmodium species and their mosquito-vector. Merozoites of these two respe...

Neural stem cell-mediated CE/CPT-11 enzyme/prodrug therapy in transgenic mouse model of intracerebellar medulloblastoma
Medulloblastoma is a heterogeneous diffuse neoplasm that can be highly disseminated, and is the most common malignant childhood brain tumor. Although multimodal treatments have improved survival rates for patients with medulloblastoma, these tumors are associated with high morbidity and mortality...