A low-order point vortex model for the two-dimensional unsteady aerodynamics of a flat plate wing section is developed. A vortex is released from both the trailing and leading edges of the flat plate, and the strength of each is determined by enforcing the Kutta condition at the edges. The strength of a vortex is frozen when it reaches an extremum, and a new vortex is released from the corresponding edge. The motion of variable-strength vortices is computed in one of two ways. In the first approach, the Brown–Michael equation is used in order to ensure that no spurious force is generated by the branch cut associated with each vortex. In the second approach, we propose a new evolution equation for a vortex by equating the rate of change of its impulse with that of an equivalent surrogate vortex with identical properties but constant strength. This impulse matching approach leads to a model that admits more general criteria for shedding, since the variable-strength vortex can be exchanged for its constant-strength surrogate at any instant. We show that the results of the new model, when applied to a pitching or perching plate, agree better with experiments and high-fidelity simulations than the Brown–Michael model, using fewer than ten degrees of freedom. We also assess the model performance on the impulsive start of a flat plate at various angles of attack. Current limitations of the model and extensions to more general unsteady aerodynamic problems are discussed.
Related Content
Modeling of nonlinear and non-stationary multi-vortex behavior of CDWs at nanoscales in restricted geometries of internal junctions
We report on studies of stationary states and their transient dynamic for an incommensurate charge density wave (ICDW) in a restricted geometry of two spatial dimensions. The model takes into account multiple fields in mutual nonlinear interactions: the amplitude and the phase of the complex orde...


Periodically plunging foil near a free surface
Experiments were performed to investigate the effects of amplitude and depth on the drag reduction of a NACA 0012 airfoil plunging near a free surface for a range of frequencies. Beyond the effect of the free surface, at low Strouhal numbers based on amplitude, SrA, the drag reduction follows a p...
Tethered cube stabilization by means of leading-edge DBD plasma actuation
An experimental investigation was carried out to assess the effectiveness of active flow control as a means for suppressing oscillations of a tethered cube. Two experimental configurations were considered: a static configuration involving surface pressure and particle image velocimetry (PIV) flow...


Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio
We investigate experimentally the effect of aspect ratio ( > ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of > = 2 and 4 are tested in a 50 % by mass glycerin–water mixture, with a total rotation of ϕ = 120° ...
Nonsinusoidal motion effects on energy extraction performance of a flapping foil
To seek better energy extraction performance of a flapping hydrofoil, various nonsinusoidal motion profiles are employed instead of conventional sinusoidal flapping motions. The effects of nonsinusoidal motions are investigated for four kinds of nonsinusoidal flapping motions, i.e. varying effect...

The flow over a thin airfoil subjected to elevated levels of freestream turbulence at low Reynolds numbers
Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulenc...
Three-dimensional measurements of vortex breakdown
Leading-edge vortex formation and breakdown have been measured over a periodically plunging non-slender delta wing at a high angle of attack, using a three-dimensional particle-tracking method. A very rare type of vortex breakdown in the form of a double helix has been captured in the phase-avera...

Role of β-Hairpin Formation in Aggregation: The Self-Assembly of the Amyloid-β(25–35) Peptide
The amyloid-β(25–35) peptide plays a key role in the etiology of Alzheimer's disease due to its extreme toxicity even in the absence of aging. Because of its high tendency to aggregate and its low solubility in water, the structure of this peptide is still unknown. In this work, we sought to u...
An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications
The subject of heat transfer enhancement has significant interest to develop the compact heat exchangers in order to obtain a high efficiency, low cost, light weight, and size as small as possible. Therefore, energy cost and environmental considerations are going on to encourage attempts to inven...

On the competition between leading-edge and tip-vortex growth for a pitching plate
The interaction between leading-edge-vortex and tip-vortex development on a low-aspect-ratio plate has been investigated and compared to a nominally two-dimensional rectangular flat plate. Simultaneous to force measurements, three-dimensional particle tracking velocimetry (3D-PTV) was used to cha...