Progressive Type-II hybrid censoring is a mixture of progressive Type-II and hybrid censoring schemes. In this paper, we discuss the statistical inference on Weibull parameters when the observed data are progressively Type-II hybrid censored. We derive the maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators (AMLEs) of the Weibull parameters. We then use the Asymptotic distributions of the maximum likelihood estimators to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and also by using the Gibbs sampling procedure. Monte.
Related Content
Parameter estimation of three-parameter Weibull distribution based on progressively Type-II censored samples
In this paper, the estimation of parameters for a three-parameter Weibull distribution based on progressively Type-II right censored sample is studied. Different estimation procedures for complete sample are generalized to the case with progressively censored data. These methods include the maxim...


One- and two-sample Bayesian prediction intervals based on progressively Type-II censored data
Are derived. For the illustration of the developed results, the exponential, Pareto, Weibull and Burr Type-XII models are used as examples. Some of the previous results in the literature such as Dunsmore (Technometrics 16:455–46, 1974), Nigm and Hamdy (Commun Stat Theory Methods 16:1761–1772,...
Inference for the generalized rayleigh distribution based on progressively censored data
In this paper, and based on a progressive type II censored sample from the generalized Rayleigh (GR) distribution, we consider the problem of estimating the model parameters and predicting the unobserved removed data. Maximum likelihood and Bayesian approaches are used to estimate the scale and s...


Inference on unknown parameters of a Burr distribution under hybrid censoring
Based on hybrid censored data, the problem of making statistical inference on parameters of a two parameter Burr Type XII distribution is taken up. The maximum likelihood estimates are developed for the unknown parameters using the EM algorithm. Fisher information matrix is obtained by applying m...
Inference for the scale parameter of lifetime distribution of k-unit parallel system based on progressively censored data
In this paper, inference for the scale parameter of lifetime distribution of a k-unit parallel system is provided. Lifetime distribution of each unit of the system is assumed to be a member of a scale family of distributions. Maximum likelihood estimator (MLE) and confidence intervals for the sca...

Inference for the Geometric Extreme Exponential Distribution under Progressive Type II Censoring
Geometric extreme exponential (GE-exponential) is one of the nonnegative right-skewed distribution that is suitable for analyzing lifetime data. It is well known that the maximum likelihood estimators (MLEs) of the parameters lead to likelihood equations that have to be solved numerically. In thi...
Exact nonparametric confidence, prediction and tolerance intervals based on multi-sample Type-II right censored data
Exact nonparametric inference based on ordinary Type-II right censored samples has been extended here to the situation when there are multiple samples with Type-II censoring from a common continuous distribution. It is shown that marginally, the order statistics from the pooled sample are mixture...

Exact distribution of the MLEs of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring
Epstein [Truncated life tests in the exponential case, Ann. Math. Statist. 25 (1954), pp. 555–564] introduced a hybrid censoring scheme (called Type-I hybrid censoring) and Chen and Bhattacharyya [Exact confidence bounds for an exponential parameter under hybrid censoring, Comm. Statist. Theory...
Semi-parametric hybrid empirical likelihood inference for two-sample comparison with censored data
Two-sample comparison problems are often encountered in practical projects and have widely been studied in literature. Owing to practical demands, the research for this topic under special settings such as a semiparametric framework have also attracted great attentions. Zhou and Liang (Biometrika...

Bayesian nonparametric inference on quantile residual life function: Application to breast cancer data
There is often an interest in estimating a residual life function as a summary measure of survival data. For ease in presentation of the potential therapeutic effect of a new drug, investigators may summarize survival data in terms of the remaining life years of patients. Under heavy right censor...